

Certificate of Compliance

Device under Test (DUT): Grid Tie Photovoltaic Inverter

Company: Schneider (Thailand) Ltd.

Brand/Model Schneider Electric Model XC 630

Test report number: SERT-Type Test-INV 003/13

Date of certification: January 22, 2013

Scopes of validation:

1. Visual inspection

All three phases grid-connected inverter under test are in complete and perfect condition. No crack, distortion, or any visual defect around the inverter under test.

2. Compatible operation in accordance to IEC 61727, IEC 62116, IEC 61000-3-4 and IEC 61000-3-5 incorporating with PEA recommendation

- 2.1 Safety and protection function of inverter are tested under simulated operating condition as follows; islanding protection, over/under voltage, over/under frequency, fault ride through, and response to utility recovery.
- 2.2 Power quality under grid connected condition of the tested three phases gridconnected inverter is evaluated as follows; normal voltage and frequency operating condition, flicker, direct current injection, harmonics and waveform distortion, reactive power control, and active power control.

3. Manufacture data for The Device under Test (DUT)

DC Operating Voltage Range	510 – 850 V	AC Nominal Operating Voltage	350 V
DC Max. Operating Voltage	1000 V	AC Nominal Operating Frequency	50/60 Hz
DC Operating Voltage, MPPT	510 - 800 V	AC Nominal Output Power	630 kW
DC Max. Input Current	1280 A	AC Max. Output Current	1040 A

Photovoltaic System Technology & Standard Testing Research Unit

School of Renewable Energy Technology, Naresuan University

Tel. & Fax. 055-963180, 055-963182 E-mail: niponk@nu.ac.th, Website: http://www.sert.nu.ac.th

4. Summary of validated results for the DUT

Safety and protection function and Power quality under grid connected condition				
Test condition	PEA Regulation 2013	PEA Regulation 2008		
1. Over/Under Voltage	Passed	Passed		
When the interface voltage deviates				
outside the conditions specified with PEA				
Regulation, the photovoltaic system shall				
cease to energize the utility distribution				
system.				
2. Over/Under Frequency	Passed	Passed		
When the utility frequency deviates				
outside the conditions specified with PEA				
Regulation, the photovoltaic system shall				
cease to energize the utility distribution				
system.				
3. Islanding Protection	Passed	Passed		
PV system must cease to energize the				
utility line with in 2 second of loss utility				
4. Response to Utility Recovery	Passed	Passed		
Following an out-of-range utility condition				
that has caused the photovoltaic system				
to cease energizing, the PV system shall				
not energize the utility distribution line for				
20 second after the service voltage and				
frequency of utility system have recovered				
to within the specified ranges				
5. Dynamic Network Support	Passed	NA		
(Fault Ride Through)				
6. Voltage and Frequency	Passed	Passed		
7. Flicker	Passed	Passed		
Short-term severity value not exceed 1.0	(<u>0.25@85°</u>)	(<u>0.25@85°</u>)		
Long-term severity value not exceed 0.8	(<u>0.25@85°</u>)	(<u>0.25@85</u> °)		
8. DC Injection	Passed	Passed		
PV system shall not inject DC current				
greater than 0.5% of the rated inverter				
output current				
9. Reactive Power Control	Passed	NA		
- A fixed displacement factor cos ϕ				
- A variable reactive power depending on				
the voltage Q(U)				

Photovoltaic System Technology & Standard Testing Research Unit

School of Renewable Energy Technology, Naresuan University

Tel. & Fax. 055-963180, 055-963182 E-mail: niponk@nu.ac.th, Website: http://www.sert.nu.ac.th

Safety and protection function and Power quality under grid connected condition				
Test condition	PEA Regulation 2013	PEA Regulation 2008		
10. Active Power Control	Passed	NA		
The PV system must be capable of				
reducing their active power at steps the				
active connection power as follows;				
100%, 60%, 30%, respectively				
11. Harmonic and Waveform Distortion	Passed	Passed		
The PV system output should have low				
current-distortion levels to ensure that				
no adverse effects are caused to other				
equipment connected to the utility				
system. Total harmonic current				
distortion shall be less than 5 % at				
rated inverter output. Each individual				
harmonic shall be limited to the				
percentages				

Ν	ote:	
	occ.	

1) It should be noted that the results illustrated in this report is applicable only for the Device under Test (DUT)

2) The report should not be reproduced without the written approval from SERT.

(Mr. Rattaporn Ngoenmeesri)

Researcher of School of Renewable Energy Technology

(Mr. Kongrit Mansiri)

Researcher of School of Renewable Energy Technology

K. Marsin

(Dr.Chatchai Sirisamphanwong)

C. Sirisamphanhong

Researcher of School of Renewable Energy Technology

Vin hit

(Assistant Professor Dr. Nipon KetJoy)

Head of Photovoltaic System Technology & Standard Testing Research Unit

Deputy Director for Research Affairs School of Renewable Energy Technology, Naresuan University